Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 580(7803): E7, 2020 04.
Article in English | MEDLINE | ID: covidwho-73543

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Ann Am Thorac Soc ; 17(7): 839-846, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-38758

ABSTRACT

Rationale: The current outbreak of coronavirus disease (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, spreads across national and international borders. The overall death rate of COVID-19 pneumonia in the Chinese population was 4%.Objectives: To describe the process of hospitalization and critical care of patients who died of COVID-19 pneumonia.Methods: This was a multicenter observational study of 109 decedents with COVID-19 pneumonia from three hospitals in Wuhan. Demographic, clinical, laboratory, and treatment data were collected and analyzed, and the final date of follow-up was February 24, 2020.Results: The mean age of 109 decedents with COVID-19 pneumonia was 70.7 years, 35 patients (32.1%) were female, and 85 patients (78.0%) suffered from one or more underlying comorbidities. Multiple organ failure, especially respiratory failure and heart failure, appeared in all patients even at the early stage of disease. Overall, the mean time from onset of symptoms to death was 22.3 days. All 109 hospitalized patients needed admission to an intensive care unit (ICU); however, because of limited availability, only 51 (46.8%) could be admitted. The period from hospitalization to death in the ICU group and non-ICU group was 15.9 days (standard deviation = 8.8 d) and 12.5 days (8.6 d, P = 0.044), respectively.Conclusions: Mortality due to COVID-19 pneumonia was concentrated in patients above the age of 65 years, especially those with major comorbidities. Patients who were admitted to the ICU lived longer than those who were not. Our findings should aid in the recognition and clinical management of such infections, especially with regard to ICU resource allocation.


Subject(s)
Betacoronavirus , Coronavirus Infections , Critical Care/methods , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Respiratory Insufficiency , Aged , Betacoronavirus/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Mortality , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Outcome and Process Assessment, Health Care , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/etiology , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Prognosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Risk Assessment , Risk Factors , SARS-CoV-2
3.
Chin Med J (Engl) ; 133(9): 1032-1038, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-3344

ABSTRACT

BACKGROUND: Since early December 2019, the 2019 novel coronavirus disease (COVID-19) has caused pneumonia epidemic in Wuhan, Hubei province of China. This study aimed to investigate the factors affecting the progression of pneumonia in COVID-19 patients. Associated results will be used to evaluate the prognosis and to find the optimal treatment regimens for COVID-19 pneumonia. METHODS: Patients tested positive for the COVID-19 based on nucleic acid detection were included in this study. Patients were admitted to 3 tertiary hospitals in Wuhan between December 30, 2019, and January 15, 2020. Individual data, laboratory indices, imaging characteristics, and clinical data were collected, and statistical analysis was performed. Based on clinical typing results, the patients were divided into a progression group or an improvement/stabilization group. Continuous variables were analyzed using independent samples t-test or Mann-Whitney U test. Categorical variables were analyzed using Chi-squared test or Fisher's exact test. Logistic regression analysis was performed to explore the risk factors for disease progression. RESULTS: Seventy-eight patients with COVID-19-induced pneumonia met the inclusion criteria and were included in this study. Efficacy evaluation at 2 weeks after hospitalization indicated that 11 patients (14.1%) had deteriorated, and 67 patients (85.9%) had improved/stabilized. The patients in the progression group were significantly older than those in the disease improvement/stabilization group (66 [51, 70] vs. 37 [32, 41] years, U = 4.932, P = 0.001). The progression group had a significantly higher proportion of patients with a history of smoking than the improvement/stabilization group (27.3% vs. 3.0%, χ = 9.291, P = 0.018). For all the 78 patients, fever was the most common initial symptom, and the maximum body temperature at admission was significantly higher in the progression group than in the improvement/stabilization group (38.2 [37.8, 38.6] vs. 37.5 [37.0, 38.4]°C, U = 2.057, P = 0.027). Moreover, the proportion of patients with respiratory failure (54.5% vs. 20.9%, χ = 5.611, P = 0.028) and respiratory rate (34 [18, 48] vs. 24 [16, 60] breaths/min, U = 4.030, P = 0.004) were significantly higher in the progression group than in the improvement/stabilization group. C-reactive protein was significantly elevated in the progression group compared to the improvement/stabilization group (38.9 [14.3, 64.8] vs. 10.6 [1.9, 33.1] mg/L, U = 1.315, P = 0.024). Albumin was significantly lower in the progression group than in the improvement/stabilization group (36.62 ±â€Š6.60 vs. 41.27 ±â€Š4.55 g/L, U = 2.843, P = 0.006). Patients in the progression group were more likely to receive high-level respiratory support than in the improvement/stabilization group (χ = 16.01, P = 0.001). Multivariate logistic analysis indicated that age (odds ratio [OR], 8.546; 95% confidence interval [CI]: 1.628-44.864; P = 0.011), history of smoking (OR, 14.285; 95% CI: 1.577-25.000; P = 0.018), maximum body temperature at admission (OR, 8.999; 95% CI: 1.036-78.147, P = 0.046), respiratory failure (OR, 8.772, 95% CI: 1.942-40.000; P = 0.016), albumin (OR, 7.353, 95% CI: 1.098-50.000; P = 0.003), and C-reactive protein (OR, 10.530; 95% CI: 1.224-34.701, P = 0.028) were risk factors for disease progression. CONCLUSIONS: Several factors that led to the progression of COVID-19 pneumonia were identified, including age, history of smoking, maximum body temperature at admission, respiratory failure, albumin, and C-reactive protein. These results can be used to further enhance the ability of management of COVID-19 pneumonia.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Adult , Aged , COVID-19 , Female , Hospitals , Humans , Logistic Models , Male , Middle Aged , Risk Factors , SARS-CoV-2
4.
Nature ; 579(7798): 265-269, 2020 03.
Article in English | MEDLINE | ID: covidwho-258

ABSTRACT

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Subject(s)
Betacoronavirus/classification , Communicable Diseases, Emerging/complications , Communicable Diseases, Emerging/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Adult , Betacoronavirus/genetics , COVID-19 , China , Communicable Diseases, Emerging/diagnostic imaging , Communicable Diseases, Emerging/pathology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Genome, Viral/genetics , Humans , Lung/diagnostic imaging , Male , Phylogeny , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , RNA, Viral/genetics , Recombination, Genetic/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnostic imaging , Severe Acute Respiratory Syndrome/pathology , Tomography, X-Ray Computed , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL